GPU-accelerated indirect boundary element method for voxel model analyses with fast multipole method
نویسنده
چکیده
An indirect boundary element method (BEM) that uses the fast multipole method (FMM) was accelerated using graphics processing units (GPUs) to reduce the time required to calculate a three-dimensional electrostatic field. The BEM is designed to handle cubic voxel models and is specialized to consider square voxel walls as boundary surface elements. The FMM handles the interactions among the surface charge elements and directly outputs surface integrals of the fields over each individual element. The CPU code was originally developed for field analysis in human voxel models derived from anatomical images. FMM processes are programmed using the NVIDIA Compute Unified Device Architecture (CUDA) with double-precision floating-point arithmetic on the basis of a shared pseudocode template. The electric field induced by DC-current application between two electrodes is calculated for two models with 499,629 (model 1) and 1,458,813 (model 2) surface elements. The calculation times were measured with a four-GPU configuration (two NVIDIA GTX295 cards) with four CPU cores (an Intel Core i7-975 processor). The times required by a linear system solver are 31 s and 186 s for models 1 and 2, respectively. The speed-up ratios of the FMM range from 5.9 to 8.2 for model 1 and from 5.0 to 5.6 for model 2. The calculation speed for element-interaction in this BEM analysis was comparable to that of particle-interaction using FMM on a GPU.
منابع مشابه
An Implementation of Low-Frequency Fast Multipole BIEM for Helmholtz’ Equation on GPU
Acceleration of the fast multipole method (FMM), which is the fast and approximate algorithm to compute the pairwise interactions among many bodies, with graphics processing units (GPUs) has been investigated for the last couple of years. In view of the type of kernel functions, the non-oscillatory kernels (especially, the Laplace kernel) were studied by many researchers (e.g. Gumerov), and the...
متن کاملFast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation
The indirect boundary element method for the Helmholtz equation in three dimensions is of great interest and practical value for many problems in acoustics as it is capable of treating infinitely thin plates and allows coupling of interior and exterior scattering problems. In the present paper we provide a new approach for treatment of boundary integrals, including hypersingular, singular, and ...
متن کاملA GPU-accelerated Boundary Element Method and Vortex Particle Method
Vortex particle methods, when combined with multipole-accelerated boundary element methods (BEM), become a complete tool for direct numerical simulation (DNS) of internal or external vortex-dominated flows. In previous work, we presented a method to accelerate the vorticity-velocity inversion at the heart of vortex particle methods by performing a multipole treecode N-body method on parallel gr...
متن کاملFast Multipole Accelerated Boundary Element Methods for the 3D Helmholtz Equation
Abstract The development of a fast multipole method accelerated iterative solution of the boundary element equations for large problems involving hundreds of thousands elements for the Helmholtz equations in 3D is described. The BEM requires several approximate computations (numerical quadrature, approximations of the boundary shapes using elements) and the convergence criterion for iterative c...
متن کاملA Fast, Unstructured Panel Solver
A parallel high-order Boundary Element Method accelerated by the Fast Multipole Method is presented in this report. The case of potential flow about arbitrary geometries will be investigated using this method. The goal of this application is to provide a ”pushbutton” tool for the design of aircraft, where medium-fidelity solutions can be obtained in seconds and not hours or days required by Nav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 182 شماره
صفحات -
تاریخ انتشار 2011